NEW

KA Imaging Launching Portable Dual-Energy X-ray Detector

For the first time, practitioners will be able to leverage dual-energy X-ray technology in a portable system. Canadian manufacturer KA Imaging is getting ready to launch Reveal, the world’s first dual-energy X-ray detector that can be taken to the bedside. “Due to...

CereHealth Showcases “Going Against the Norm” During the Society of Nuclear Medicine and Molecular Imaging’s Annual Meeting

CereHealth Corp., a recognized leader and innovator in biotechnology applications and advanced neurodiagnostics, announced that its FDA-cleared population template, an alternative to traditional normative datasets for quantitative analysis of clinical brain SPECT,...

VA Selects Philips to Create World’s Largest Tele-Critical Care System

Royal Philips has announced that the U.S. Department of Veterans Affairs (VA) has awarded a contract to Philips to expand VA’s tele-critical care program, creating the world’s largest system to provide veterans remote access to intensive care expertise, regardless of...

Hologic Launches Cart-Based Ultrasound System

Hologic Inc. has announced the U.S. launch of the SuperSonic MACH 40 ultrasound system, expanding the company’s suite of ultrasound technologies with its first premium, cart-based system. The new system features excellent image quality, standard-setting imaging modes...

Study: AI-Powered Solution Achieves High Accuracy for Detecting COVID-19 on CT

RADLogics has announced new research that validates the performance of an AI-powered CT image analysis solution that is designed to automatically and accurately detect COVID-19 (Coronavirus) and quantify the disease burden in affected patients. To meet the growing worldwide pandemic, RADLogics also announced that it has rapidly deployed this new CT image analysis algorithm, which helps classify results for patients with COVID-19 per thoracic CT studies utilizing deep-learning image analysis.

“As the novel coronavirus continues to rapidly spread around the world, healthcare systems and providers may become overwhelmed with symptomatic patients that require testing, imaging, and treatment,” said RADLogics’ CEO and Co-Founder Moshe Becker. “In an effort to help alleviate this burden on the world’s healthcare providers – and to support improved patient outcomes – we dedicated our resources toward successfully modifying and adapting our existing AI models to develop this solution specifically for COVID-19 detection and quantification. To date, we have already deployed our solution in China, Russia and Italy, and we are rapidly scaling in other countries in response to the strong demand.”

The study, led by Professor Hayit Greenspan from Tel Aviv University and RADLogics, in collaboration with medical experts from the US and China including Dr. Eliot Siegel of the University of Maryland School of Medicine in Baltimore, MD; and Dr. Adam Bernheim of the Icahn School of Medicine at Mount Sinai in New York, NY; found that the CT image analysis algorithm – developed from multiple international datasets – was able to differentiate 157 patients with and without COVID-19 with a 0.996 AUC (plus, 98.2 percent sensitivity and 92.2 percent specificity). Although it is not recommended as a first-line test, non-contrast thoracic CT has been shown to be an effective tool in the detection, quantification, and follow-up of COVID-19. Thus, in addition to detecting and quantifying disease burden, RADLogics’ image analysis further outputs a suggested “Corona Score,” which measures the percentage of lung volume that is infected by disease.

A consistent and reproducible method for rapidly screening and evaluating high volumes of thoracic CT imaging studies can assist healthcare systems through this pandemic by augmenting radiologists and acute care teams that could be overwhelmed with patients. Additionally, with a greater volume of patients who must be screened for coronavirus, earlier and more rapid detection of positive cases can help improve both the treatment of patients and containment of virus spread.

“This study validates our novel solution, which has been widely studied via multiple international datasets and a range of retrospective experiments to analyze the performance over time,” added Becker. “The conclusion was clear: our rapidly-developed AI-based image analysis can achieve high accuracy in detection of coronavirus as well as quantification and tracking of disease burden.”

Results of this study are available on arXiv.org, and it has been submitted to the Radiology Society of North America (RSNA) for review and potential publication in Radiology: Artificial Intelligence. RADLogics is also expanding the initial study to a larger population.

For more information on the RADLogics AI solution for detecting COVID-19, visit our dedicated site at radlogics.com/coronavirus or contact lynn@radlogics.com.

Previous

Next

Submit a Comment

Your email address will not be published. Required fields are marked *